Molecular Caging of Graphene with Cyclohexane: Transfer and Electrical Transport
نویسندگان
چکیده
Transfer of large, clean, crack- and fold-free graphene sheets is a critical challenge in the field of graphene-based electronic devices. Polymers, conventionally used for transferring two-dimensional materials, irreversibly adsorb yielding a range of unwanted chemical functions and contaminations on the surface. An oil-water interface represents an ideal support for graphene. Cyclohexane, the oil phase, protects graphene from mechanical deformation and minimizes vibrations of the water surface. Remarkably, cyclohexane solidifies at 7 °C forming a plastic crystal phase molecularly conforming graphene, preventing the use of polymers, and thus drastically limiting contamination. Graphene floating at the cyclohexane/water interface exhibits improved electrical performances allowing for new possibilities of in situ, flexible sensor devices at a water interface.
منابع مشابه
Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملElectronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT
Quantum transport properties of pure and functioned infinite lead-connection region-lead systembased on the zigzag graphene nanoribbon (2-zGNR) have been investigated. In this work the effectof the doping functionalization on the quantum transport of the 2-zGNR has been computationallystudied. Also, the effect of the imposed gate voltages (-3.0, 0.0 and +3.0 V) and bias voltages 0.0 to2.0 V hav...
متن کاملInvestigation of Heat Transfer Coefficient of Ethylene Glycol/ Graphenenanofluid in Turbulent Flow Regime
In the present work, graphene was synthesized by chemical vapor deposition (CVD) method. The structure of graphene was then confirmed by X-Ray diffraction (XRD) and scanning electron microscope (TEM) images. After that, mixed acid method (H2<span style=...
متن کاملTransport studies in graphene-based materials and structures
Hu, Jiuning Ph.D., Purdue University, May 2015. Transport studies in graphenebased materials and structures. Major Professor: Yong P. Chen. Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some the...
متن کامل